Integrating Microarray Data by Consensus Clustering
نویسندگان
چکیده
With the exploding volume of microarray experiments comes increasing interest in mining repositories of such data. Meaningfully combining results from varied experiments on an equal basis is a challenging task. Here we propose a general method for integrating heterogeneous data sets based on the consensus clustering formalism. Our method analyzes source-specific clusterings and identifies a consensus set-partition which is as close as possible to all of them. We develop a general criterion to assess the potential benefit of integrating multiple heterogeneous data sets, i.e. whether the integrated data is more informative than the individual data sets. We apply our methods on two popular sets of microarray data yielding gene classifications of potentially greater interest than could be derived from the analysis of each individual data set.
منابع مشابه
Heterogeneous Data Integration with the Consensus Clustering Formalism
Meaningfully integrating massive multi-experimental genomic data sets is becoming critical for the understanding of gene function. We have recently proposed methodologies for integrating large numbers of microarray data sets based on consensus clustering. Our methods combine gene clusters into a unified representation, or a consensus, that is insensitive to mis-classifications in the individual...
متن کاملGraph-based consensus clustering for class discovery from gene expression data
MOTIVATION Consensus clustering, also known as cluster ensemble, is one of the important techniques for microarray data analysis, and is particularly useful for class discovery from microarray data. Compared with traditional clustering algorithms, consensus clustering approaches have the ability to integrate multiple partitions from different cluster solutions to improve the robustness, stabili...
متن کاملModification of the Fast Global K-means Using a Fuzzy Relation with Application in Microarray Data Analysis
Recognizing genes with distinctive expression levels can help in prevention, diagnosis and treatment of the diseases at the genomic level. In this paper, fast Global k-means (fast GKM) is developed for clustering the gene expression datasets. Fast GKM is a significant improvement of the k-means clustering method. It is an incremental clustering method which starts with one cluster. Iteratively ...
متن کاملEntropy-based Consensus for Distributed Data Clustering
The increasingly larger scale of available data and the more restrictive concerns on their privacy are some of the challenging aspects of data mining today. In this paper, Entropy-based Consensus on Cluster Centers (EC3) is introduced for clustering in distributed systems with a consideration for confidentiality of data; i.e. it is the negotiations among local cluster centers that are used in t...
متن کاملAn unsupervised fuzzy ensemble algorithmic scheme for gene expression data analysis
Background: In recent years unsupervised ensemble clustering methods have been successfully applied to DNA microarray data analysis to improve the accuracy and the reliability of clustering results. Nevertheless, a major problem is represented by the fact that classes of functionally correlated examples (e.g. subclasses of diseases characterized at bio-molecular level) are not in general clearl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- International Journal on Artificial Intelligence Tools
دوره 13 شماره
صفحات -
تاریخ انتشار 2003